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Summary

In countercurrent distribution, as in other methods of separation, a
solute band broadens during the analysis. This allows the definition of
theoretical plates, resolution, and peak capacities in terms of CCD
parameters, namely, the number of transfers and the partition co-
efficients. The significance and the implication of the above quantities
in evaluating CCD is discussed. When possible, comparisons with other
methods of separation are made.

Countercurrent distribution (CCD) is now an established tool of
analysis. Among its many uses are separation, purity analysis, and
structure determination (7). As in other methods of separation, the
solute band which is introduced to the CCD apparatus as a narrow
zone at the beginning of the analysis is broadened during the separa-
tion process. In chromatography the width of a solute zone is char-
acterized in terms of its variance or more frequently in terms of the
height equivalent to theoretical plate. Either of these two quantities
is a measure of the system’s efficiency and both the resolution between
two solutes and the peak capacity (2, 3) of the system are dependent
on it. Giddings (2) has recently demonstrated that the concepts of
variance, HETP, resolution, and peak capacity can be extended to
other methods of separation such as sedimentation and electro-
phoresis. In contrast to chromatography, sedimentation and electro-
phoresis CCD is not a continuous process. Nonetheless, the afore-
mentioned parameters can be applied to analyze and characterize

331
Copyright © 1971 by Marcel Dekker, Inc.



14: 32 25 January 2011

Downl oaded At:

332 E. GRUSHKA

CCD systems. This will allow direct comparison between CCD and
other methods of separations.

PLATE NUMBER AND PLATE HEIGHT

It can be shown that after n extractions or transfers the tube 7.«
that contains the maximum amount of the solute is given by:

K
. Tmax = NP = 1_’”_}_—1{‘ (1)

Likewise the variance of the solute band is (1)

nK

"1 (1§ R
K is the partition coefficient of the solute, p is the probability of
finding a solute molecule in the upper or moving phase, and ¢ is
the probability of finding the solute molecule in the lower or stationary
phase. In fact, p is equivalent to the chromatographic R parameter;
that is, the ratio of the solute velocity to that of the mobile phase
(4). In Eqgs. (1) and (2), as in the rest of the paper, it is assumed
that the volumes of the phases are equal. In the case where the two
volumes are not equal, Egs. (1) and (2) can be corrected by multi-
plying every K by the ratio of the moving phase volume to that of
the stationary phase. In chromatography the variance of the zone is
an important parameter since it is directly related to the chroma-
tographic processes oceurring and it is a measure of the efficiency
of the system (4). Most frequently one talks about the plate number
N or the height equivalent to theoretical plate H since both these
quantities are related to the variance. Although the variance of a
CCD peak has been previously studied (5), the generation of theo-
retical plates by a CCD train, to the knowledge of this author, has
not been analyzed.

The number of plates N is defined as the ratio of the square of
the length migrated to the variance. In the case of CCD this definition
leads to

¢ =

(2)

ZV _ Tmax - ZI_Z_) (3)

Since ¢ =1 — p, Eq. (3) becomes

n
N =P =K @)

The plate number is thus a linear function of the partition coefficient
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and of the number of transfers. Equation (4) has some interesting
aspects. First, the number of plates will equal the number of tubes
moved by the solute only in the case of K = 1. Depending on n and
K the plate number can assume any value up to a certain upper
limit and indeed it can be greater than the number of tubes moved
by the solute. For example, if K = 50, then after 100 transfers the
peak maximum will be at tube number 98, its width will be about
5 tubes, and the plate number is 5000—a surprisingly large number.
The upper limit of the plate number is 7%,, or »* and it occurs when
K is of such a magnitude that the width of the peak is 1 tube. How-
ever when K is very large, Egs. 1 and 2, and thus Eq. (4), are no
longer good approximations. The second point of interest is that for
a given number of transfers the plate number varies from one solute
to another due to N dependence on K. It should be noted that while
the peak width has a maximum at K = 1, the plate number has no
such maximum and it increases continuously with increasing K.
Finally, Eq. (4) indicates the benefits of a large number of transfers.
A large n will increase the plate number, which means a relative
sharpening of the zone as it moves down the CCD train.

The height equivalent to theoretical plate H is given by
o? 1
T 14K ®)
The plate height is a function of the partition coefficient and it is
independent of the number of transfers. It should be stressed that H
can vary between 1/n and unity only. Although one might expect
that H should equal 1 tube, Eq. (5) shows that it is almost always
less than unity. The expression for H in Eq. (5) is much simpler
than its equivalent in chromatography where the plate height depends
on many factors besides K.

Until now the discussion was centered on the so-called fundamental
process (I); that is, the number of transfers is equal to the number
of tubes in the train. Another method of CCD is the single with-
drawal procedure (I) in which the mobile phase is withdrawn off
the last tube in the train. In this case the shape of the concentration
profile can still be considered as Gaussian and the transfer number
that contains the peak maximum is given by (6)

_ Rk _R(1+K)
Tmax = 0= TR (6)

H =

where R i1s the number of tubes in the train minus 1 for the zeroth
tube. The variance of the peak is given by
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g? = lmex )

The plate number, then, i1s given by

2
N =" = oK = RO+ K) )

Equation (8) is similar to Eq. (4) in its dependence on K and on
the number of transfers. Here, however, the way to increase the
relative sharpness of the peaks is to increase the number of stages
in the train or to change K by changing the nature of the two phases.
Equation (8) indicates that the lower limit of N is just the number
of stages in the train. As before, the upper limit of NV is n2,,..
The plate height is given by
0.2

1
H = =% 9)

nm ax

Similarly to the fundamental process, H depends solely on the parti-
tion coefficient. A comparison between Eqgs. (9) and (5) or (7) and
(2) indicates that, under the condition that ng., is equal to n in the
fundamental process, the latter yields narrower peaks. The HETP
values of the two techniques becomes equal at high values of K.
However, at very large partition coefficients Eqs. (6) and (7) are not
entirely valid and should be used with caution.

The fact that for a given CCD system N depends only on the
number of transfers and on the partition coefficient means that N
can be reproduced from one laboratory to another provided that the
systems are identical in composition and temperature. This is an
advantage over chromatographic techniques where the reproducibility
of N can be a challenging problem. H or N can be of great value in
determining partition coefficients and compound purity. Moreover,
as will be shown in the next section, N is related to the resolution
between two components and hence to the required number of trans-
fers that will resolve two solutes.

RESOLUTION IN C€CD

In chromatography the resolution Rs is defined as (4, 7)

_ Aty
14

Rs (10)
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where Aty is the difference between the two peaks maxima and W
is the average width of the two concentration profiles. In a similar
manner the resolution between two peaks in the fundamental pro-
cedure can be written as

Te — T

= 1/2(d0; + 4dow) (1)

where the subseripts 1 and 2 refer to the first and second peaks,
respectively, and 4o is defined as the peak width. We now assume
that the widths of the two peaks are equal. Equation (2) indicates
that the variances of two peaks are never the same, but if K, is close
in value to K, this approximation is not a bad one. Using Eq. (3)

we can obtain
Rs = }—/ZZY (u) (12)

T2

Rs

Finally, from Eq. (1) we obtain
_ \/N<p2—p1>= VN Ap

4 D2 4 Pe

which is the analog of the chromatographic resolution equation (7).
Here N is the plate number of the peak with the highest K value.
The resolution depends implicitly on the number of transfers via
its dependence on the plate number. Thus in order to double the
resolution, the number of transfers done should be quadrupled. The
resemblance to the resolution dependence on the column length in
chromatography is striking.

Tollowing a similar line of reasoning for the case of single with-
drawal one obtains a resolution equation which is identical to that
in Eq. (13). The resolution here is proportional to the square root
of the number of tubes in the train.

In chromatography the number of plates that are required to
yield a resolution of unity is frequently a sought after quantity.
While in CCD the required plate number can be calculated from
Eq. (13), a more important parameter is the required number of
transfers that must be carried out to achieve unit resolution. A few
workers have already dealt with various aspects of the required
number of transfers (8-14). To a first approximation we can start
with Eq. (13) by rearranging it and by solving for the required
number of transfers n,., which will yield Rs =1

Rs

(13)
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16p2(1 — p»)
= PR T Py 14
T = p)? w
or in terms of the K’s
_ 16K,(1 + Ky)?

nreq - (K2 _ K1)2 (15)
Here K, > K;. Equation (15), except for the numerical constant, is
identical to the required number of transfers expression given by
Nichols (9, Eq. 19) although it was derived here from a different
point of view. Equation (15) has reasonable limits; i.e.

lim 7geq — @
Ks— K,

. (16)
lim 7peq — ®
K0

When K, is very large compared to Ki, n. should approach the
limit of unity and not zero as predicted by Eq. (15). The reason for
this diserepancy lies in the nature of the approximation made; i.e.,
similar K values of the two solutes.

A more rigorous method of approach lies in Eq. (11). Unit resolu-
tion means that

g — 1 = 2(01 + 0’2) (17)

By substituting for 7, 7, oy, and ¢, and solving for the required
number of transfers to achieve unit resolution, one obtains the follow-
ing equation which is a modification of some previously derived
expressions (6, 9, 12, 14)

VE(K: + 1) + VE(Ki + 1)]2 (18)

ftrea =4[ K - K

This equation has the same limits previously shown in Eq. (16).
When K, is very large and much greater than K, then n,., approaches
the limit of 4K,. Equation (18) has three variables and when plotted
in three-dimensional space a curved surface is obtained which has
no maximum or minimum. The surface can be represented in two-
dimensional plots in terms of contour lines of constant 7... In Table
1 the entries at each crossing of a K, column with a K, row is feq
as calculated from Eq. (18). The table was arbitrarily limited to K
value of 0.1 to 1 with increments of 0.05 K units. Since K, > K;, the
only relevant values are those to the left of the diagonal line which
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represent the contour line of n,., = 0. An inspection of the entries
in the table reveals the various lines of constant required number of
transfers. For example n,., is 39 for the following sets of the partition
coefficients: K, = 0.5, K, =0.1; K, =065, K, = 0.15; K, = 08, K, =
0.2; K, =095, K, =0.25. Table 1 and its extension to higher K’s
can be very useful in determining the capabilities of any CCD train
and in allowing the resolution of two components in the shortest
possible time.

Three comments can be made about Eq. (18); (a) when K, is
close in value to K, Eq. (18) can be reduced to Eq. (15). This is to
be expected since the expression for n,., given in Eq. (15) was derived
with the approximation that the two partition coefficients are close
in their magnitude. (b) When expressed in terms of 8 = K,;/K,, the
required number of transfers is given by

. [x/KT(Kla + 1) + VBE:(K) + 1)]2
KB - 1)

At constant 8 values Eq. (19) has a minimum which occurs at

Ky =ltVE_ 1 (20)
| = -
B+Ve kK

This is in agreement with the results of Bush and Densen (15). It
should be noted that the above minimum occurs only under the
condition of constant 8. The general expression of 7., i.e., Eq. (18),
does not predict a minimum. Wolf’s (14) statement that the minimum
number of transfers oceurs when K, K, = 1 is correct only at constant
B. Since Eq. (18) does not predict a minimum of 7n,., Eq. (20) means
that under the constraint of constant 8 a path is traced on the
n-K,-K, surface as K, is changed and this path will have a minimum.
(¢) In the case when K K, = 1, Eq. (18) becomes

. _ 16K,
Teq (1 — K2)2

which, except for a numerical constant, is similar to the expression
obtained by Gregory and Craig (10).

(19)

(21)

PEAK CAPACITY OF A CCD TRAIN

Giddings (2, 16) and more recently Grushka (3) have shown that
the peak capacity is an important efficiency parameter in many
separation methods. Briefly the peak capacity is the theoretical maxi-
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mum number of ecomponent that can be separated, with the resolution
of unity between two consecutive solutes, between the fastest moving
component and the slowest. In chromatography the peak ecapacity
is proportional to the square root of the plate number of the column
and to the logarithm of the ratio of the retention time of the last
solute to that of an inert one. In CCD, the plate number cannot be
assumed constant for all solutes, and the peak capacity cannot be
expressed in a simple analytical equation. A generating equation,
however, can be set up which will allow the determination of the
peak capacity. This can be done as follows.

The condition of unit resolution means that for the fundamental
process the following equation can be set up.

np; — npia = 2AVnpigi + Vnpiagial (22)
where n is the number of transfers and is equal to the number of
tubes in the train. Subscript 7 represents the ith solute and ¢ — 1 the
slower solute; i.e., p; > p;—.. This equation can be rearranged to give

np; — 2 Vap(l — pi) = npig + 2 \/npi—l(l — pia1) (23)

We can arbitrarily choose the highest K to be 100. This solute will
have a p value of 0.9901 and it will move as fast as the upper phase
does. Thus for a given number of tubes in a CCD train and for a
solute with p given as above, the left-hand side of Eq. (23) is known
quantity which we call T. Equation (22) has now only one unknown,
namely p;_,, which can be easily computed

20T + 4n & (20T + 40)? — 4T%n? + 4m)]
Pin = 2(n? + 4n)

Only the negative root has physical significance. p;-, is the p value
of the solute following the ith one and subject to the constraint of
unit resolution between the two peaks. Once p;-, is known it is sub-
stituted for p; in the left-hand side of Eq. (23). A new T value is
obtained and Eq. (24) is then used for the computation of p;_,. This
generation of p values is continued until such a small p value is
obtained that the position of its maximum is around the second tube
in the train. The number of p values generated is the total number of
peaks that can be resolved; i.e., the peak capacity of the instrument.

Equations (23) and (24) indicate that for a given solvent system
the peak capacity depends only on the number of tubes in the train.
Figure 1 shows that the dependence is not linear. In fact Fig. 1

(24)
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FIG. 1. Peak capacity vs. number of tubes. Fundamental process.

shows that to a first approximation the peak capacity is roughly
equal to n4,

The peak capacity can be increased if by some mechanism, such
as a continuous change in the nature of the moving upper phase, one
can maintain constant peak width. In this case it can be shown that
after n transfers (n being equal to the number of tubes in the appara-
tus) the following relation holds

n=2vVnpl — p) + 4(C — 1) Vnp(l — p) (25)

where p is determined from the fastest moving component and C
is the peak capacity. Rearranging

1/2
C=1/2+ 1/4 [17(1"71)),] (26)

If we choose K = 100, i.e., p = 0.9901, then the dependence of C on
the number of tubes is shown in Fig. 2. For the sake of comparison
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1000 .
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FIG. 2. Peak capacity vs. number of tubes. A: Fundamental process.
B: Constant peak width.

Fig. 1 is included in Fig. 2. While Eq. (26) predicts oo as the upper
limit of C, in actual practice that limit is, of course, equal to the
number of tubes in the train.

The peak capacity of CCD system can also be increased by using
the single withdrawal procedure. Here again a generating equation
can be set up both for the withdrawal material and for the remainder
in the train. Following a similar line of argument as in the case of
the fundamental process, it ean be shown that

— (4R — 2RT) & [(4R — 2RT)* — 4AT?*(R?* — 4R)]\*
Pia = 97T

where

(@7

r o B 2RO = pol
D: P
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and R is the number of tubes minus 1. In Eq. (27) only the negative
root has a physical significance. As before, the generation of the p
values begins by assuming that the fastest moving peak has a parti-
tion coefficient of 100. Once p;_, is found it is used to obtain T which
in turn is used to obtain p;_,. This process stops when the p value
is such that for n transfers the solute having that p value begins to
emerge from the train. As an example, assume that the train has
100 tubes and 1000 transfers were applied. When calculating the peak
capacity for the withdrawn portion, the generating of p should be
stopped at p = 0.1. Again the number of generations is the peak
capacity. The peak capacity, for a given solvent system, depends
on the number of transfers performed. Figure 3 shows the dependence

4
10

LEBRELELALA

T T

1 1 1

1 e
10 5 20 25 30
peak capacity

102

(¢,

FIG. 3. Peak capacity vs. number of transfers. Withdrawn part. A: 100
tube train. B: 200 tube train. C: 1000 tube train.

for three CCD trains of different lengths. It is interesting to note
that, in certain cases, for an equal number of transfers a shorter
train is slightly more efficient in terms of the number of resolvable
peaks than a longer one.

In order to obtain the total peak capacity of the single withdrawal
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technique, the number of components left in the train must be taken
into account. This can be easily accomplished with the aid of Egs.
(23) and (24) because we have essentially a fundamental process.
The only alteration that one must make is in the value of the first p;
in the generation, which is dictated by the number of transfers done.
The p; value should be such that for n transfers the peak maximum
is at the last tube of the train. When the number of resolved com-
ponent left in the train is determined, one finds the following. In
the case of the 100 tube train the peak capacity is 6 for the 200
transfers and 5 for all other n up to 10,000. In the case of the 200
tube train, for n up to 10,000 the number of resolved peaks left will
be 8. Finally, with the 1000 tube unit at 1500 transfers, 19 resolved
peaks will be left, at 2000 transfers 18 peaks, at 3000 and 5000
transfers 17 peaks, and at 10,000 transfers the train will contain 16
resolved peaks. Our theoretical results can be compared with Craig’s
(17) work. He showed a CCD pattern for 1000 tube unit with 4000
transfers. The withdrawn portion showed 17 resolved peaks and the
train had 11 additional solutes in it. From Fig. 3 our treatment
prediets about 20 peaks withdrawn after 4000 transfers with about
17 left in the train. Craig did not indicate his criterion of unit resolu-
tions. Therein might lie the cause for the small discrepancy between
his and our results. Qur results also indicate that the fundamental
process is the more efficient of the two techniques. For example, the
peak capacity in a 1000 tube train after 1000 transfers is larger than
in a 200 tube unit after 1000 transfers.

To increase the efficiency of a CCD train in term of resolvable
peaks the following recommendation can be made. (a) When possible,
increase the number of transfers; (b) when possible, carry out the
separation only in the fundamental process manner; and (¢) when
possible, program the moving phase in such a manner as to increase
the partition coefficient of slow moving solutes.

In summary it can be said that the knowledge of such parameters
as the plate height, plate number, resolution, and peak capacity
allows a direet comparison of CCD with other methods of separation.
For example, in terms of peak capacity CCD compares favorably
with gel permeation and liquid chromatography but not with gas
chromatography. The parameters can facilitate the optimization of
CCD runs both in terms of the analysis time and of the number of
tubes in the train.
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