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SEPARATION SCIENCE, 6(3), pp. 331-344, June, 1971 

Theoretical Plates, Resolution, 
and Peak Capacity in Countercurrent Distribution 

ELI  GRUSHKA 
DEPARTMENT OF CHEMISTRY 

STATE UNIVERSITY OF NEW YORK AT B U F F A M  

BUFFALO, NEW YORK 14214 

Summary 

In countercurrent distribution, as in other methods of separation, a 
solute band broadens during the analysis. This allows the definition of 
theoretical plates, resolution, and peak capacities in terms of CCD 
parameters, namely, the number of transfers and the partition co- 
efficients. The significance and the implication of the above quantities 
in evaluating CCD is discussed. When possible, comparisons with other 
methods of separation are made. 

Countercurrent distribution (CCD) is now an established tool of 
analysis. Among its many uses are separation, purity analysis, and 
structure determination (1 ) .  As in other methods of separation, the 
solute band which is introduced to the CCD apparatus as a narrow 
zone a t  the beginning of the analysis is broadened during the separa- 
tion process. In  chromatography the width of a solute zone is char- 
acterized in terms of its variance or more frequently in terms of the 
height equivalent to  theoretical plate. Either of these two quantities 
is a measure of the system’s efficiency and both the resolution between 
two solutes and the peak capacity ( 2 ,  3) of the system are dependent 
on it. Giddings ( 2 )  has recently demonstrated that the concepts of 
variance, HETP,  resolution, and peak capacity can be extended to 
other methods of separation such as sedimentation and electro- 
phoresis. In  contrast to chromatography, sedimentation and electro- 
phoresis CCD is not a continuous process. Nonetheless, the afore- 
mentioned parameters can be applied to analyze and characterize 
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332 E. GRUSHKA 

CCD systems. This will allow direct comparison between CCD and 
other methods of separations. 

PLATE NUMBER AND PLATE HEIGHT 

I t  can be shown that after n extractions or transfers the tube rlllax 
that contains the maximum amount of the solute is given by: 

nK 
r,,, = n p  = ~ 1 + K  

Likewise the variance of the solute band is ( I )  

K is the partition coefficient of the solute, p 

(2) 

is the probability of 
finding a solute molecule in the upper or moving phase, and q is 
the probability of finding the solute molecule in the lower or stationary 
phase. In  fact, p is equivalent to  the chromatographic R parameter; 
that is, the ratio of the solute velocity to that of the mobile phase 
( 4 ) .  In  Eqs. ( 1 )  and ( a ) ,  as in the rest of the paper, i t  is assumed 
that the volumes of the phases are equal. In  the case where the two 
volumes are not equal, Eqs. (1) and (2) can be corrected by multi- 
plying every K by the ratio of the moving phase volume to that of 
the stationary phase. In  chromatography the variance of the zone is 
an important parameter since it is directly related to the chroma- 
tographic processes occurring and i t  is a measure of the efficiency 
of the system (4). Most frequently one talks about the plate number 
N or the height equivalent to theoretical plate H since both these 
quantities are related to the variance. Although the variance of a 
CCD peak has becn previously studied ( 5 ) ,  the generation of theo- 
retical plates by a CCD train, to the knowledge of this author, has 
not been analyzed. 

The number of plates N is defined as the ratio of the square of 
the length migrated to the variance. In the case of CCD this definition 
leads to 

Since q = 1 - p ,  Eq. (3) becomes 

N = - -  np - n K  
1 - P  (4) 

The plate number is thus a linear function of the partition coefficient 
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COUNTERCURRENT DISTRIBUTION 333 

and of the number of transfers. Equation (4) has some interesting 
aspects. First, the number of plates will equal the number of tubes 
moved by the solute only in the case of K = 1. Depending on n and 
K the plate number can assume any value up to a certain upper 
limit and indeed i t  can be greater than the number of tubes moved 
by the solute. For example, if K = 50, then after 100 transfers the 
peak maximum will be a t  tube number 98, its width will be about 
5 tubes, and the plate number is 5000-a surprisingly large number. 
The upper limit of the plate number is r:nax or n2 and it occurs when 
K is of such a magnitude that the width of the peak is 1 tube. How- 
ever when K is very large, Eqs. l and 2, and thus Eq. (4), are no 
longer good approximations. The second point of interest is that  for 
a given number of transfers the plate number varies from one solute 
to another due to N dependence on K.  It should be noted that while 
the peak width has a maximum a t  K = 1, the plate number has no 
such maximum and it increases continuously with increasing K .  
Finally, Eq. (4) indicates the benefits of a large number of transfers. 
A large n will increase the plate number, which means a relative 
sharpening of the zone as i t  moves down the CCD train. 

The height equivalent to thcoretical plate H is given by 

The plate height is a function of the partition coefficient and i t  is 
indcpendent of the number of transfers. It should be stressed that N 
can vary between l/n and unity only. Although one might expect 
that H should equal 1 tube, Eq. ( 5 )  shows that i t  is almost always 
less than unity. The expression for H in Eq. ( 5 )  is much simpler 
than its equivalent in chromatography where the plate height depends 
on many factors besides K .  

Until now the discussion was centered on the so-called fundamental 
process (1) ; that  is, the number of transfers is equal to the numher 
of tubes in the train. Another method of CCD is the single wich- 
drawal procedure (1) in which the mobile phase is withdrawn off 
the last tube in the train. In  this case the shape of the concentration 
profile can still be considered as Gaussian and the transfer number 
that contains the peak maximum is given by (6) 

where R is the number of tubes in the train minus 1 for the zeroth 
tube. The variance of the peak is given by 
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334 E. GRUSHKA 

The plate number, then, is given by 

(8)  iV = __ = nmaxK = R( l  + K )  

Equation (8) is similar to  Eq. (4) in its dependence on K and on 
the number of transfers. Here, however, the way to increase the 
relative sharpness of the peaks is to  increase the number of stages 
in the train or to change K by changing the nature of the two phases. 
Equation (8) indicates that  the lower limit of N is just the number 
of stages in the train. As before, the upper limit of N is nkax. 

nL3x 
fJ2 

The plate height is given by 

Similarly to  the fundamental process, H depends solely on the parti- 
tion coefficient. A comparison between Eqs. (9) and (5) or (7) and 
(2) indicates that ,  under the condition that  nmax is equal to  n in the 
fundamental process, the latter yields narrower peaks. The HETP 
values of the two techniques becomes equal a t  high values of K. 
However, at  very large partition coefficients Eqs. (6) and (7 )  are not 
entirely valid and should be used with caution. 

The fact that  for a given CCD system N depends only on the 
number of transfers and on the partition coefficient means that N 
can be reproduced from one laboratory to another provided that the 
systems are identical in composition and temperature. This is an 
advantage over chromatographic techniques where the reproducibility 
of N can be a challenging problem. N or N can be of great value in 
determining partition coefficients and compound purity. Moreover, 
as will be shown in the next section, N is related to the resolution 
between two components and hence to the required number of trans- 
fers that  will resolve two solutes. 

RESOLUTION IN CCD 

In  chromatography the resolution Rs is defined as (4 ,  '7) 
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COUNTERCURRENT DISTRIBUTION 335 

where AtE is the difference between the two peaks maxima and 
is the average width of the two concentration profiles. In  a similar 
manner the resolution between two peaks in the fundamental pro- 
cedure can be written as 

where the subscripts 1 and 2 refer to the first and second peaks, 
respectively, and 4~ is defined as the peak width. We now assume 
that the widths of the two peaks are equal. Equation (2) indicates 
that the variances of two peaks are never the same, but if K ,  is close 
in value to K ,  this approximation is not a bad one. Using Eq. (3) 
we can obtain 

Finally, from Eq. (1)  we obtain 

which is the analog of the chromatographic resolution equation (7 ) .  
Here N is the plate number of the peak with the highest K value. 
The resolution depends implicitly on the number of transfers via 
its dependence on the plate number. Thus in order to double the 
resolution, the number of transfers done should be quadrupled. The 
resemblance to the resolution dependence on the column length in 
chromatography is striking. 

Following a similar line of reasoning for the case of single with- 
drawal one obtains a resolution equation which is identical to that 
in Eq. (13). The resolution here is proportional to the square root 
of the number of tubes in the train. 

In  chromatography the number of plates that are required to 
yield a resolution of unity is frequently a sought after quantity. 
While in CCD the required plate number can be calculated from 
Eq. (13) ,  a more important parameter is the required number of 
transfers that  must be carried out to achieve unit resolution. A few 
workers have already dealt with various aspects of the required 
number of transfers (8-14). To a first approximation we can start 
with Eq. (13) by rearranging i t  and by solving for the required 
number of transfers nreq which will yield Rs = 1 
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336 E. GRUSHKA 

or in terms of the K's 

Here K ,  > K,. Equation (15), except for the numerical constant, is 
identical to the required number of transfers expression given by 
Nichols (9, Eq. 19) although i t  was derived here from a different 
point of view. Equation (15) has reasonable limits; i.e. 

lim nreq -+ co 

lim nreq -+ m 
Kp-iKi 

Kz-0 

When K ,  is very large compared to K,, nreq should approach the 
limit of unity and not zero as predicted by Eq. (15). The reason for 
this discrepancy lies in the nature of the approximation made; i.e., 
similar K values of the two solutes. 

A more rigorous method of approach lies in Eq. (11).  Unit resolu- 
tion means that 

rz - TI = 2(a1 + ad (17) 
By substituting for r, ,  r,, u,, and u2 and solving for the required 
number of transfers to achieve unit resolution, one obtains the follow- 
ing equation which is a modification of some previously derived 
expressions (6 ,  9, 12, 1.4) 

This equation has the same limits previously shown in Eq. (16). 
When K ,  is very large and much greater than K,, then nreq approaches 
the limit of 4K,. Equation (18) has three variables and when plotted 
in three-dimensional space a curved surface is obtained which has 
no maximum or minimum. The surface can be represented in two- 
dimensional plots in terms of contour lines of constant nreq. In  Table 
1 the entries a t  each crossing of a K ,  column with a K,  row is nreq 
as calculated from Eq. (18).  The table was arbitrarily limited to K 
value of 0.1 to 1 with increments of 0.05 K units. Since K ,  > K,, the 
only relevant values are those to the left of the diagonal line which 
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TABLE 1 

The Required Number of Transfers as a Function of K1 and Ks 

K1 

KI 0.1 0.15 0.2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8 .85 .9 .95 1 

0.1 
0.15 998 
0.2 304 1534 
0.25 159 449 2149 
0.3 103 228 614 2850 
0.35 74 145 307 800 3641 
0.4 58 103 192 395 1010 4527 
0.45 47 79 135 244 494 1244 5513 
0.5 39 63 103 171 303 603 1503 6603 
0.55 34 53 82 129 210 368 724 1789 7804 
0.6 30 45 68 102 158 254 439 858 2104 9118 
0.65 26 39 57 84 124 189 302 518 1004 2447 10552 
0.7 24 35 .50 71 102 149 224 355 604 1163 2821 12109 
0.75 21 31 44 61 86 121 176 262 412 697 1336 3226 13796 
0.8 20 28 39 54 74 102 143 205 304 474 798 1523 3664 15616 
0.85 18 26 35 48 65 88 120 166 236 349 541 908 1725 4136 17574 
0.9 16 24 32 43 57 76 102 139 191 271 397 614 1026 1942 4643 19676 
0.95 16 22 30 39 52 68 89 118 159 219 308 450 692 1152 2176 5187 21926 

1 15 21 27 36 47 61 79 103 136 182 248 348 506 776 1288 2426 5768 24328 

W 
W 
v 
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338 E. GRUSHKA 

represent the contour line of nleq = co. An inspection of the entries 
in the table reveals the various lines of constant required number of 
transfers. For example nrrs is 39 for the following sets of the partition 

0.2; K,  = 0.95, K ,  = 0.25. Table 1 and its extension to higher K's 
can be very useful in determining the capabilities of any CCD train 
and in allowing the resolution of two components in the shortest 
possible time. 

Three comments can be made about Eq. (18) ; (a )  when K ,  is 
close in value to  K,, Eq. (18) can be reduced to Eq. (15). This is to 
be expected since the expression for nreq given in Eq. (15) was derived 
with the approximation that  the two partition coefficients are close 
in their magnitude. (b)  When expressed in terms of ,f3 = K,/K,, the 
required number of transfers is given by 

coefficients: K ,  = 0.5, K ,  = 0.1; K ,  = 0.65, K ,  = 0.15; K? = 0.8, K, = 

At constant p values Eq. (19) has a minimum which occurs a t  

This is in agreement with the results of Bush and Densen (15 ) .  It 
should be noted that the above minimum occurs only under the 
condition of constant p .  The general expression of nrrq, i.e., Eq. (18), 
does not predict a minimum. Wolf's (14)  statement that  the minimum 
number of transfers occurs when K,K2 = 1 is correct only a t  constant 
p. Since Eq. (18) does not predict a minimum of nnreq, Eq. (20) means 
that under the constraint of constant p a path is traced on the 
n-K,-K, surface as K ,  is changed and this path will have a minimum. 
(c) In  the case when K,K, = 1, Eq. (18) becomes 

which, except for a numerical constant, is similar to  the expression 
obtained by Gregory and Craig (10). 

PEAK CAPACITY OF A CCD TRAIN 

Giddings (2 ,  16) and more recently Grushka (3) have shown that 
the peak capacity is an  important efficiency parameter in many 
separation methods. Briefly the peak capacity is the theoretical maxi- 
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COUNTERCURRENT DISTRIBUTION 339 

mum number of component that  can be separated, with the resolution 
of unity between two consecutive solutes, between the fastest moving 
component and the slowest. I n  chromatography the peak capacity 
is proportional to the square root of the plate number of the column 
and to the logarithm of the ratio of the retention time of the last 
solute to that of an inert one. In  CCD, the plate number cannot be 
assumed constant for all solutes, and the peak capacity cannot be 
expressed in a simple analytical equation. A generating equation, 
however, can be set up which will allow the determination of the 
peak capacity. This can be done as follows. 

The condition of unit resolution means that for the fundamental 
process the following equation can be set up. 

n p i  - npi-1 = 2 r d n X  + dnPi-lqi-11 (22) 
where n is the number of transfers and is equal to the number of 
tubes in the train. Subscript i represents the ith solute and i - 1 the 
slower solute; i.e., p i  > p i - l .  This equation can be rearranged to give 

n p i  - 

We can arbitrarily choose the highest K to be 100. This solute will 
have a p value of 0.9901 and i t  will move as fast as the upper phase 
does. Thus for a given number of tubes in a CCD train and for a 
solute with p given as above, the left-hand side of Eq. (23)  is known 
quantity which we call T .  Equation (22)  has now only one unknown, 
namely p i+ ,  which can be easily computed 

2nT + 4% f [(2nT + 4nj2 - 4T2(n2 + 4n)1''2 
2(n2 + 4n) (24) 

Only the negative root has physical significance. pi-l  is the p value 
of the solute following the ith one and subject to the constraint of 
unit resolution between the two peaks. Once pi-l  is known it is sub- 
stituted for p i  in the left-hand side of Eq. ( 2 3 ) .  A new T value is 
obtained and Eq. (24) is then used for the computation of p i + .  This 
generation of p values is continued until such a small p value is 
obtained that the position of its maximum is around the second tube 
in the train. The number of p Kalues generated is the total number of 
peaks that can be resolved; i.e., the peak capacity of the instrument. 

Equations (23)  and (24)  indicate that for a given solvent system 
the peak capacity depends only on the number of tubes in the train. 
Figure 1 shows that the dependence is not linear. In  fact Fig. 1 

pi-1 = 
- 
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---c 

10 
5 10 16 20 

peak copacity 
FIG. 1. Peak capacity vs. number of tubes. Fundamental process. 

shows that to a first approximation the peak capacity is roughly 
equal to 

The peak capacity can be increased if by some mechanism, such 
as a continuous change in the nature of the moving upper phase, one 
can maintain constant peak width. In  this case i t  can be shown that 
after n transfers (n  being equal to the number of tubes in the appara- 
tus) the following relation holds 

n = 2 dnp(1 - p) + 4(C - 1) dnp(1 - p) 
where p is determined from the fastest moving component and C 
is the peak capacity. Rearranging 

(26) 

If we choose K = 100, i.e., p = 0.9901, then the dependence of C on 
the number of tubes is shown in Fig. 2. For the sake of comparison 
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peak capacity 

FIG. 2. Peak capacity vs. number of tubes. A :  Fundamental process. 
B: Constant peak width. 

Fig. 1 is included in Fig. 2. While Eq. (26) predicts 00 as the upper 
limit of C, in actual practice that limit is, of course, equal to the 
number of tubes in the train. 

The peak capacity of CCD system can also be increased by using 
the single withdrawal procedure. Here again a generating equation 
can be set up both for the withdrawal material and for the remainder 
in the train. Following a similar line of argument as in the case of 
the fundamental process, i t  can be shown that  

(27) 
- ( 4 R  - 2RT) + [ (4R  - 2RT)‘ - 4T2(R2 - 4R)1”2 

2T2 pi-1 = 

where 

R 2[R(1 - Pi)]”2 T = - - +  
Pi Pi 
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342 E. GRUSHKA 

and R is the number of tubes minus 1. In Eq. (27) only the negative 
root has a physical significance. As before, the generation of the p 
values begins by assuming that the fastest moving peak has a parti- 
tion coefficient of 100. Once pi-l is found it is used to obtain T which 
in turn is used to obtain pi-,. This process stops when the p value 
is such that for n transfers the solute having that p value begins to 
emerge from the train. As an example, assume that the train has 
100 tubes and 1000 transfers were applied. When calculating the peak 
capacity for the withdrawn portion, the generating of p should be 
stopped at  p = 0.1. Again the number of generations is the peak 
capacity. The peak capacity, for a given solvent system, depends 
on the number of transfers performed. Figure 3 shows the dependence 

1 I 1 I 1 I 

5 10 I5 20 25 30 lO*L 

peak capocity 

FIG. 3. Peak capacity vs. number of transfers. Withdrawn part. A: 100 
tube train. B: 200 tube train. C: 1000 tube train. 

for three CCD trains of different lengths. It is interesting to note 
that, in certain cases, for an equal number of transfers a shorter 
train is slightly more efficient in terms of the number of resolvable 
peaks than a longer one. 

In  order to obtain the total peak capacity of the single withdrawal 
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COUNTERCURRENT DISTRIBUTION 343 

technique, the number of components left in the train must be taken 
into account. This can be easily accomplished with the aid of Eqs. 
(23) and (24) because we have essentially a fundamental process. 
The only alteration that one must make is in the value of the first p i  
in the generation, which is dictated by the number of transfers done. 
The p ,  value should be such that for n transfers the peak maximum 
is a t  the last tube of the train. When the number of resolved com- 
ponent left in the train is determined, one finds the following. In  
the case of the 100 tube train the peak capacity is 6 for the 200 
transfers and 5 for all other n up to 10,000. In  the case of the 200 
tube train, for n up to 10,OOO the number of resolved peaks left will 
be 8. Finally, with the 1000 tube unit a t  1500 transfers, 19 resolved 
peaks will be left, a t  2000 transfers 18 peaks, a t  3000 and 5000 
transfers 17 peaks, and a t  10,000 transfers the train will contain 16 
resolved peaks. Our theoretical results can be compared with Craig’s 
(17) work. He showed a CCD pattern for 1000 tube unit with 4000 
transfers. The withdrawn portion showed 17 resolved peaks and the 
train had 11 additional solutes in it. From Fig. 3 our treatment 
predicts about 20 peaks withdrawn after 4000 transfers with about 
17 left in the train. Craig did not indicate his criterion of unit resolu- 
tions. Therein might lie the cause for the small discrepancy between 
his and our results. Our results also indicate that the fundamental 
process is the more efficient of the two techniques. For example, the 
peak capacity in a 1000 tube train after 1000 transfers is larger than 
in a 200 tube unit after 1000 transfers. 

To increase the efficiency of a CCD train in term of resolvable 
peaks the following recommendation can be made. (a)  When possible, 
increase the number of transfers; (b) when possible, carry out the 
separation only in the fundamental process manner; and (c) when 
possible, program the moving phase in such a manner as to increase 
the partition coefficient of slow moving solutes. 

In summary it can be said that the knowledge of such parameters 
as the plate height, plate number, resolution, and peak capacity 
allows a direct comparison of CCD with other methods of separation. 
For example, in terms of peak capacity CCD compares favorably 
with gel permeation and liquid chromatography but not with gas 
chromatography. The parameters can facilitate the optimization of 
CCD runs both in terms of the analysis time and of the number of 
tubes in the train. 
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